Al-Farabi Kazakh National University Faculty of Biology and Biotechnology Department of Biophysics, Biomedicine and Neuroscience

SYLLABUS Fall semester 2022-2023 academic years on the educational program '6B05103 – Biotechnology'

		students		
ent work Lectu Practical training Labora b	ber of	individual		
of res (PT) tory c	credits	work with		
students (L) (Lab) (IWS)		teacher (SIWT)		
PB4304 Biophysics 98 15 15 15	3	6		
Academic course information				
Form of education Type of course Types of lectures Types of practical Nur	umber	Form of		
training of S	f SIW	final control		
Full-time (hybrid)Core discipline /hybridhybrid	4	hybrid		
university				
component				
Lecturer Gumarova Lyazzat Zhanbulatovna, PhD, professor				
e-mail Lyazzat.Gumarova@kaznu.kz				
Telephone number 377 - 36 - 06; 377 - 33 - 33 (19 - 80)				
Laboratory Abdilmanov Daniyar Erlanovich				
e-mail abdilmanovdaniar@gmail.com				
Telephone number $+7/47/44646208$				
Academic presentation of the course				
Aim of course Expected Learning Indicators of LO achievement (ID)				
Outcomes (LO) As a (for each LO at least 2 indica	cators)			
result of studying the				
uiscipline the				
to:				
The aim of the ' Biophysics ' 1 To become familiar with 11 Students should be able to demonstrate	te acquir	ed		
course is to introduces the basic concepts and knowledge in the field of biophysics and the	knowledge in the field of biophysics and their understanding.			
students to the basic concepts laws of biophysics 1.2. Demonstrate an understanding of the ge	1.2 Demonstrate an understanding of the general structure of			
and laws of biophysics, the the field of study of biophysics and the link	ks betwe	en its		
applicability of the laws of sections;				
physics to living systems, 2. To learn and utilize 2.1 Students should be able to include new 1	v knowle	dge in the		
provide a fundamental, standard tools, methods for context of basic knowledge of specialty, and	context of basic knowledge of specialty, and interpret its			
theoretical basis for all academic study of the content;	content;			
modern biological sciences. biophysics. 2.2. Analyze the educational situations, and	nd propos	se a		
direction for a possible solution;				
2.3. Use biophysical methods used in variou	ous areas	s of biology		
for an individual or group educational and r	l research	n activities;		
3. To learn scholarly 3.1. Students should be able to generalize, in	3.1. Students should be able to generalize, interpret and			
conventions for the evaluate obtained results of training in the f	evaluate obtained results of training in the field of biophysics			
biophysics. 3.2. Analyze the dynamics of scientific prot	oblems	solving, of		
the biophysics course;				
3.3. Make an analysis of the study results of	of the bi	ophysics		
course, summarize them in the form of a sci	course, summarize them in the form of a scientific essay,			
presentation, review, scientific review, etc.;	notruction			
4. 10 develop practice 4.1 Students should be able to conduct cons	aboratic	. n in tha		
field group:	group.			
4.2 Pronose a problem for consideration and be able		ble to		
defend its importance.				

	5. To describe, analyze and apply the use of main biophysical principles in	5.1. Students should be able to be aware of the role of the course in the implementation of the individual learning path 5.2. Should be able to describe, analyze and apply the use of	
	any field of biology	main biophysical principles in any field of biology	
Prerequisites	Physics.		
Post requisites	Diploma project.		
Information resources	Literature:		
	1. R.Glaser. Biophysics. // Ber	rlin; New York: Springer2012, 361 p.	
	2. Gopal B. Saha. Physics and	Radiobiology of Nuclear Medicine. Fourth Edition	
	//Springer, 2013	NM Cumaraua I Zh Kulhavava MS Shuataava E V	
	5. Tuleuknanov S.T., Inyushin Manual for laboratory class	a in hiological physics: methodical development / comp :	
	S T Tuleukhanov NM In	vushin J. Zh. Gumarova [et al.] – Almaty: Oazaguniversity	
	2016 - 116 p	yusinii, E.Zh. Gumarova [et al.]. – Annaty. Qazaquniversity,	
	Internet resources:		
	www.univer.kaznu.kz		
	https://link.springer.com/content/pdf/10.1007%2F978-3-642-25212-9.pdf		
	https://link.springer.com/content/pdf/bfm%3A978-3-662-46777-0%2F1.pdf		
	https://link.springer.com/content/pdf/bfm%3A978-1-4614-1531-2%2F1.pdf		
	https://link.springer.com/book/10.1007/978-981-13-2158-0		
	https://link.springer.com/c	content/pdf/bfm%3A978-1-60327-233-9%2F1.pdf	
Academic policy of the	Academic Behavior Rules:		
course in the context	Non-compliance with deadlines lea	tion of the content of the curriculum	
and ethical values	The technique of avoiding a	ttending classes	
und cuncur vuldes	Absence or delay in a lessor	higher warning the teacher is estimated at 0 points	
	Receive and timely compl	lete tasks (SIW, temporary, control, laboratory, design, etc.),	
	projects, exams. The student is	assessed with penalty points, which are deducted in case of	
	termination of the assignment.		
	Academic values:		
	- Practical trainings/laboratories, IV	WS should be independent, creative.	
	- Plagiarism, forgery, cheating at al	Il stages of control are unacceptable.	
	- Students with disabilities can rec	eive counseling at e-mail Lyazzat.Gumarova@kaznu.kz at 3//-	
Evaluation and	Criteria-based evaluation		
attestation policy	assessment of learning outcomes	in relation to descriptors (verification of the formation of	
were points	competencies in midterm control a	nd exams).	
	Summative evaluation: assessmen	nt of work activity in an audience (at a webinar); assessment of	
	the completed task.	•	
	The final	score will be calculated by the formula	
	Final sc	ore = $(C1 + MT + C2)/3 \cdot 0.6 + FEx0,4$	
	Below are minimum estimates percentage:		
	95% - 100%· A 90% 9/	1%· A_	
	85% - 89%: B+ 80% - 84	4%: B 75% - 79% · B-	
	70% - 74%: C+ 65% - 6	9%; C 60% - 64%; C-	
	55% - 59%: D+ 50% - 54	4%: D- 0% -49%: F	

CALENDAR (SCHEDULE) THE IMPLEMENTATION OF THE COURSE CONTENT:

Schedule			
Week	Topic title	Hours	Maximum score
1	Lection. Introduction to Biophysics	1	
	Seminar. Subject of Biophysics	1	1
	Lab. Personal and general laboratory safety	1	1
2	Lection. Thermal Molecular Movement, Order and Probability.	1	

	Seminar. History of Biophysics.	1	5
	Lab. The sorption of water by plant seeds	1	1
3	Lection. Some Fundamental Concepts of Thermodynamics. First	1	
	law of thermodynamics in biological systems		
	Seminar. Thermal Molecular Movement, Order and Probability.	1	5
	Lab. pH-metry of various solutions and biological fluids	1	1
	SIW (students' individual work) 1. Energy of Activation, Theory of Absolute Reaction Rate		10
4	Lection. Second law of thermodynamics	1	
	Seminar. Molecular and Ionic Interactions as the Basis for the	1	5
	Formation of Biological Structures		
	Lab. Determination of the content of dissolved oxygen	1	1
	SIWT 1. Colloquium "Biothermodynamics"		10
5	Lection. Interfacial Phenomena and Membranes	1	
	Seminar. Interfacial Phenomena and Membranes	1	5
	Lab. The temperature coefficient and the activation energy	1	1
6	Lection. The electrical conductivity of living tissues	1	
	Seminar. Energetics and Dynamics of Biological Systems	1	5
	Lab. The electrical conductivity of living tissues	1	1
	SIW 2. Biomechanics of Blood Circulation		5
-	SIWT 2 (lab works' theory)	1	25
7	Lection. The Aqueous and Ionic Equilibrium of the living cell.	1	2
	Seminar. Energetics and Dynamics of Biological Systems		2
	Lab. Basics of electrocardiography	1	1
	SIWT 3. Colloquium "Membrane biophysics"		15
0	LEVEL CONTROL I		100
8	Lection. Electric Fields in Cells and Organisms	1	5
	Leb. The properties of light	1	<u> </u>
9	Lection Radio- and Microwave Electromagnetic Fields	1	1
-	Seminar, Low-Frequency Electromagnetic Fields	1	5
	SIW 3. The membrane potentials		10
	Lab. Low-intensity laser radiation.	1	1
10	Lection. Visible and Nonvisible Optical Radiation	1	
	Seminar. Radio- and Microwave Electromagnetic Fields	1	5
	Lab. Photoelectrocolorimetry. Determination of biological fluids by optical density	1	1
11	Lection. Visible Light: Photobiological Processes	1	
	Seminar. Visible and Nonvisible Optical Radiation	1	5
	Lab. Spectrophotometry	1	1
	SIWT 4 (lab works' theory)		9
12	Lection. Ionizing Radiation	1	
	Seminar. Visible Light: Photobiological Processes	1	5
	Lab. Sorption activity of tissues depending on the action of	1	1
10	various physical factors	1	
13	Lection. Primary Processes of Radiation Chemistry	1	5
	Lab. Optical density measurements of different solutions	1	1
			-
1.4	SIW 4. Electroconductivity of living systems	1	10
14	Lecuon. Kadiobiological Reactions	1	5
	Lab Basics of designetry	1	J 1
15	Lection Some Aspects of Radiation Protection	1	1
15	Seminar Radiobiological Reactions	1	5
	Lab. Galvanizing. Electrophoresis of drugs	1	1
	CIWT 5 (lab marke) theory		0
	SIWI 5 (IAD WORKS UNEORY)		0

SIWT 6. Colloquium "environmental biophysics"	15
LEVEL CONTROL 2	100

Dean	 Zaydan B.K.
Chairman of the Faculty Methodical Bureau	 Asrandina S.Sh.
Head of the Department	 Kustubayeva A.M.
Lecturer	 Gumarova L.Zh.